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Abstract

Damage initiation and propagation in a class of non-local and gradient-enhanced media is investigated. In this

contribution it is shown how the use of a non-local dissipation-driving state variable leads to an incorrect failure

characterisation in terms of damage initiation and propagation. Damage initiation is analysed in detail for a class of

non-local damage models––formulated in an integral and a differential format––by means of analytical considerations

and numerical investigations in a mode-I problem. A numerical study on damage propagation is also presented for a

shear band formation problem.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Correct failure characterisation, in terms of damage initiation and propagation, is a fundamental

property of any sound model. Considering failure initiation, a quantitative discrepancy between the res-

ponse of a regularised and a standard continuum is accepted but a qualitative resemblance must be

maintained. It is obvious that a wrong prediction of the correct location or moment of initiation may lead

to a misrepresentation of the failure mode and therefore of the failure load. Failure propagation is as
important as failure initiation and, in a continuous failure representation, gives an indication of the failure

mechanism. A realistic failure propagation is of paramount importance when the assessment of a consti-

tutive model is concerned.

When softening constitutive relationships are considered in a continuum mechanics framework some

sort of regularisation technique must be employed to maintain well-posedness of the governing equations.

A common technique relies on the introduction of non-local terms in the governing equations. In the class
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of non-local models analysed here (Engelen et al., 2003; Pamin et al., 2003; Peerlings et al., 1996; Pijaudier-

Cabot and Ba�zzant, 1987), only the dissipation-driving variable is given a non-local character.
Aim of this contribution is to show that the choice of a non-local quantity as damage-driving quantity

produces non-physical damage initiation away from the crack tip in mode-I problems and a wrong failure
pattern in shear band problems. Damage initiation in a class of non-local damage models, within an

integral (Pijaudier-Cabot and Ba�zzant, 1987) as well as a differential (Peerlings et al., 1996) formulation, is
analysed. The findings of this study are not limited to damage mechanics but extend easily to other dis-

sipation mechanisms, e.g. plasticity (Engelen et al., 2003; Pamin et al., 2003), if a similar form of regu-

larisation is employed. This contribution is organised as follows: in Section 2 the damage models used for

the derivations in Section 3 are recalled. In Sections 3.1 and 3.2 incorrect damage initiation in mode-I is

proven analytically and illustrated numerically, respectively while incorrect damage propagation in shear

band problems is illustrated numerically in Section 4.
2. Continuum damage theories

In isotropic damage models, material degradation is introduced through a reduction of the elastic

stiffness via a scalar quantity x (06x6 1) according to
Deffective ¼ ð1� xÞDel; ð1Þ

where Del is the constitutive fourth order elasticity tensor. The isotropic damage parameter x is a function
of the monotonically increasing deformation history parameter j, whose evolution is governed by the
Kuhn–Tucker relations
_jj P 0; e� j6 0; _jjðe� jÞ ¼ 0: ð2Þ

A local scalar measure e of the strain tensor can be defined (Mazars, 1984; Mazars and Pijaudier-Cabot,
1989) by
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

heii2
vuut ; ð3Þ
with heii ¼ ðeiþ j ei jÞ=2 and ei the principal strains, or by the von Mises strain
e ¼ 1

1þ m

ffiffiffiffiffiffiffiffiffiffiffi
�3J2

p
; ð4Þ
with m the Poisson�s ratio and the invariant J2 of the strain tensor e defined as
J2 ¼ trðe 	 eÞ �
1

3
tr2ðeÞ: ð5Þ
In this study, damage evolution is governed by the exponential softening law (Peerlings et al., 1996)
x ¼ 1� j0
j
ð1� a þ a expð�bðj � j0ÞÞÞ if j > j0; ð6Þ
with a and b model parameters and j0 the threshold of damage initiation.
In the non-local damage model proposed by Pijaudier-Cabot and Ba�zzant (1987), damage initiation is

driven by a non-local scalar measure ~ee of the strain tensor defined as
~eeðxÞ ¼
R

X wðy; xÞeðyÞdXðyÞR
X wðy; xÞdXðyÞ ; ð7Þ



A. Simone et al. / International Journal of Solids and Structures 41 (2004) 351–363 353
where w is a homogeneous and isotropic weight function for the non-local averaging. The normalised

Gaussian function
wðqÞ ¼ 1

2pl2
exp

�
� q2

2l2

	
in R2; ð8Þ
where l sets how w decays away from q ¼ 0 and q is defined as the distance between the points y and x, is
usually taken as the weight function in integral non-local models. Note that, with these definitions, the

denominator in (7) sums to unity for an infinite and regular domain. In an approximated differential version
of the non-local model implicit gradient-enhanced damage model by Peerlings et al. (1996), (7) is expanded

in a Taylor�s series around x which yields, after some manipulations and with the use of (8),
~ee� 1
2
l2r2~ee ¼ e in X: ð9Þ
Eq. (9) is complemented by the homogeneous natural boundary conditions
$~ee 	 n ¼ 0 on C; ð10Þ
where n is the outward unit normal at the boundary C of X. The equivalence of (7) and (9) has been
discussed by Peerlings et al. (2001). The non-local state variable ~ee, defined either via (7) or via (9), replaces
its local counterpart e in (2). Thus, non-locality is introduced in the model through the damage-driving state
variable.
3. Damage characterisation in mode-I problems

Proper failure characterisation relies on correct failure initiation. In quasi-brittle failure analyses of

notched specimens, experimental evidence shows that cracks propagate from the notch (van Mier, 1997).

Proper modelling of quasi-brittle material behaviour must reproduce this phenomenon.

Damage initiation in mode-I is analysed by means of the compact tension specimen with a pre-existing

crack of length h depicted in Fig. 1a. Numerical analyses showed that the elastic contour plots of the non-
local damage-driving quantity ~ee is maximum at some distance from the crack tip. More specifically, the
maximum of the non-local equivalent strain was found along the line ab, as qualitatively depicted in Fig. 1b
(analytical result) and in Fig. 2b (numerical result), and not at the crack tip. Thus, damage initiation is

predicted inside the specimen, rather than at the crack tip. In Fig. 1b, the profiles of the local equivalent

strain e and of the non-local equivalent strain ~ee (according to (7) and (9), respectively) are plotted along the
line ab. First, consider the profile of e. The local equivalent strain, as predicted by Griffith�s theory, equals 0
from point a to the crack tip. At the crack tip it is infinite, after which it decays monotonically to its finite
value at point b. The profile of the non-local counterpart ~ee differs from the profile of e in that (i) no sin-
gularity is present (as already noted by Peerlings et al. (2001)), and (ii) the maximum occurs not at the crack
tip but at some point between the crack tip and point b along the crack line. Note that the crack is dis-
cretised as a set of zero measure in this example and, as such, along line ab, it does not influence the integral
in the denominator in (7)––the denominator in (7) is the normalising factor in the non-local averaging near

free boundaries. In other words, for all points along line ab that are reasonably far from the edges of the
specimen, the denominator of (7) yields the same value, therefore the shift of maximum from e to ~ee is not
the result of a varying averaging volume. The shift of the maximum of the non-local equivalent strain ~ee
from the crack tip is a phenomenon which is independent of the stress situation (plane stress/plane strain)

and of the choice of the local equivalent strain definition as it will be illustrated in Section 3.2. Indeed, this
can be explained by considering that non-local averaging of the unsymmetrical local strain field e is
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Fig. 1. Compact tension specimen: (a) geometry and boundary conditions and (b) local (e) and non-local (~ee) equivalent strain field
along the crack line ab.
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Fig. 2. Qualitative contour plot of (a) the local elastic equivalent strain e and (b) the non-local elastic equivalent strain ~ee: due to the
non-local averaging the maximum of the non-local equivalent strain shifts away from the tip.
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performed through a symmetric function w. The shift of the maximum away from the crack tip will be

proven analytically and illustrated numerically in Sections 3.1 and 3.2, respectively.
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3.1. Analytical considerations

In the ideal situation of a planar crack in an infinite plate loaded in mode-I, such as the one depicted in

Fig. 3, the linear elastic stress field is singular at the crack tip (Ewalds and Wanhill, 1984). Analytical
manipulations under the assumption of a plane stress situation yield the Cartesian strains at a distance r
and an angle h from the crack tip o:
e11ðr; hÞ ¼
KI

E
ffiffiffiffiffiffiffi
2pr

p cos
1

2
h 1

�
� m � ð1þ mÞ sin 1

2
h sin

3

2
h

	
; ð11Þ

e22ðr; hÞ ¼
KI

E
ffiffiffiffiffiffiffi
2pr

p cos
1

2
h 1

�
� m þ ð1þ mÞ sin 1

2
h sin

3

2
h

	
; ð12Þ

e12ðr; hÞ ¼
KI

E
ffiffiffiffiffiffiffi
2pr

p ð1þ mÞ cos 1
2

h sin
1

2
h cos

3

2
h; ð13Þ

e33ðr; hÞ ¼
m

m � 1 ðe11 þ e22Þ ¼ � 2mKI
E
ffiffiffiffiffiffiffi
2pr

p cos
1

2
h; ð14Þ
from which the local equivalent strain (4) reads
eðr; hÞ ¼
ffiffiffi
2

p
KI

4E
ffiffiffiffiffi
pr

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cos hÞð5� 3 cos hÞ

p
: ð15Þ
In the above relations, E is the Young�s modulus, m the Poisson�s ratio and KI the mode-I stress intensity
factor.

Next, the non-local equivalent strain is investigated. First, its value at the crack tip is considered. Second,
it will be shown that the crack tip value ~ee0 of ~ee is not maximum since larger values of ~ee occur at locations
away from the crack tip. To demonstrate that damage initiation is incorrectly predicted with the class of

non-local models analysed here, it is necessary and sufficient to demonstrate that the absolute maximum of

the damage-driving quantity does not occur at the crack tip.
3.1.1. Crack tip value of non-local equivalent strain

Following Peerlings et al. (2001), it can be demonstrated that the non-local equivalent strain ~ee has a finite
value ~ee0 at the crack tip. To this end, the two-dimensional normalised isotropic Gaussian weight function
in (8) and the local equivalent strain expression in (15) are substituted in the non-local averaging of (7) to

give
~ee0 ¼
KI

8p3=2El2

Z 1

0

1ffiffi
r

p exp

�
� r2

2l2

	
rdr

Z þp

�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ cos hÞð5� 3 cos hÞ

p
dh: ð16Þ
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Fig. 3. Linear elastic crack problem in an infinite domain.
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The first integral in (16) can be rewritten as
Fig. 4.

the no
Z 1

0

ffiffi
r

p
exp

�
� r2

2l2

	
dr ¼

l3=2C 3
4

� �
ffiffiffi
24

p ; ð17Þ
where Cð	Þ indicates the gamma function; the second integral in (16) yields:
Z þp

�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ cos hÞð5� 3 cos hÞ

p
dh ¼ 8

ffiffiffi
2

p
� 2
3

ffiffiffi
6

p
lnð7� 4

ffiffiffi
3

p
Þ: ð18Þ
Thus,
~ee0 ¼
KI
E
ffiffi
l

p
ffiffiffiffiffi
184

p
C 3

4

� �
12p3=2

½4
ffiffiffi
3

p
� lnð7� 4

ffiffiffi
3

p
Þ� � 0:3612 KI

E
ffiffi
l

p ; ð19Þ
which proves that the non-local equivalent strain is not singular at the crack tip (for l 6¼ 0). An analogous
result was presented by Peerlings (1999, 2001). One of the conclusions reported by Peerlings (1999) is that

the absolute maximum of the non-local equivalent strain is at the crack tip. This issue is discussed next.

3.1.2. Non-local equivalent strain determination away from the crack tip

The search for larger values of the non-local equivalent strain is restricted to the points along the crack

line ab (see Fig. 2b). A point p is considered along line ab whereby the distance from the crack tip to p is
denoted by R. The weight function in (8) is written for a point p as
wp r; h;Rð Þ ¼ 1

2pl2
exp

 
� ðr cos h � RÞ2 þ ðr sin hÞ2

2l2

!
; ð20Þ
and with this expression the non-local equivalent strain at a distance R from the crack tip along the crack
line reads
~eeR ¼
Z 1

0

Z þp

�p
wpðr; h;RÞeðr; hÞrdhdr; ð21Þ
for which a closed form solution could not be obtained. Numerical evaluation of the integral in (21), for a
given R, indicates that the maximum of the non-local equivalent strain is not positioned at the crack tip (see
Fig. 4a). The linear dependence of the position of the maximum of the non-local equivalent strain upon the

length scale l is depicted in Fig. 4b which shows that the non-local equivalent strain is maximum at the

crack tip only for l ¼ 0 mm, i.e. only for a local damage model. These results extend to a finite specimen
width if the effect of a finite geometry is reflected in the stress intensity factor KI.
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Non-local equivalent strain at distance R from the tip for l ¼ 1 mm (a) and linear dependence of the position of the maximum of
n-local equivalent strain Rmax upon the length scale l (b) for unit values of E and KI.
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Note that, in general, the use of non-local averaging of field quantities with isotropic weight functions

results in a modification of failure characterisation. In the class of non-local elasticity models proposed by

Eringen et al. (1977), the stress field value at the crack tip is finite but, similar to the non-local damage

model considered here, its maximum occurs at some distance from the crack tip along the crack line. The
modification of the weight function w in order to preserve the qualitative character of the field to be

averaged (the local field) is problematic and leads to tailor-made solutions which are not recommended

when a differential version of the non-local damage model is considered.
3.2. Numerical analysis

The compact tension specimen depicted in Fig. 1a has been numerically analysed by using an integral

and a differential non-local damage model with the finite-element method. In the numerical simulations

only the upper part of the specimen has been discretised due to symmetry, and the load has been applied via

an imposed displacement. The following material parameters have been adopted for the simulation:

Young�s modulus E ¼ 1000 MPa; Poisson�s ratio m ¼ 0; exponential damage evolution law (6) with

threshold of damage initiation j0 ¼ 0:0003; softening parameters a ¼ 0:99 and b ¼ 1000; length scale
l ¼ 0:2 mm. The equivalent strain definition according to (3) has been used. The height of the specimen
has been taken as 4h ¼ 2 mm. The mesh used for the simulations has been chosen such that a sufficient
resolution of the non-local field is obtained. More details on the finite-element implementation of the

differential non-local model can be found in Peerlings et al. (1996).

Contour plots of the non-local equivalent strain at the onset of damage initiation are reported in Fig. 5.

Clearly, the maximum of the non-local equivalent strain has shifted, both for the integral model and the

differential model. Due to the shifting, damage is expected to initiate, wrongly, away from the crack tip.

However, as depicted in Fig. 6, damage profiles close to global failure of the specimen give no indication of
the incorrect damage initiation. Experience with the differential version of the non-local damage model

indicates that this is a common situation in mode-I problems and that failure characterisation close to

failure is quite similar to the ones obtained with other constitutive models. Consequently, the shift of the

maximum of the non-local equivalent strain away from the crack tip can be considered �harmless� as long as
the final failure characterisation is concerned. However, it must be realised that the use of a non-local

dissipation-driving variable leads to a non-physical damage initiation. The shift of the maximum of the

non-local equivalent strain away from the crack tip is present, although less evident, also in case of cracks
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Fig. 5. Contour plot of the non-local equivalent strain for the (a) integral non-local damage and the (b) differential non-local damage

model at the onset of damage initiation, i.e. in the elastic stage (measures in mm; crack tip at x ¼ 0:5 mm).
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or notches modelled as strongly non-convex entities with non-zero volume, i.e. when there are no strain

singularities.
4. Damage characterisation in shear band problems

The correct determination of shear bands is of prime interest and it is directly linked to the occurrence of
possible collapse mechanisms in many engineering problems. Specimen under compressive loading are

usually characterised by the formation of shear bands whose inclination can be determined analytically.

Results obtained within the flow theory of plasticity (Runesson et al., 1991) have been extended to scalar

damage models by Rizzi et al. (1995) and Carol and Willam (1997) and apply to an infinite geometry for a

standard (i.e. not regularised) medium. Their results have been derived for a specific choice of the equi-

valent strain definition and their generalisation to other equivalent strain definitions, although possible in

principle, is not within the scope of this study and therefore is not considered here. In what follows, it is

illustrated how non-local regularisation techniques significantly alter failure propagation during strain
localisation.

To illustrate the problem, shear band simulations under a plane stress and a plane strain configuration

have been performed with the gradient-enhanced continuum damage model described in Section 2 for the

two-dimensional specimen depicted in Fig. 7. Both geometries were considered to assess the validity of the

boundary condition (10) which was indeed verified: both geometries gave identical results and in the fol-

lowing only the geometry in Fig. 7b is considered. A detailed analysis regarding the treatment of the non-

local equivalent strain at the boundaries for a mode-I problem was given by Peerlings et al. (2001).

In numerical simulations of quasi-static shear band formation under compressive loading, shear bands
are usually triggered by an imperfection (placed on the left bottom corner for the specimen in Fig. 7b).

After the shear band has been initiated, expansion of the plastic zone and further localisation within the

plastic zone is observed (Zervos et al., 2001) (for a schematic initiation and evolution of the shear band, see

Fig. 8). This characterisation is valid in the context of a continuous failure description. When a discrete

approach to failure is considered (Borja, 2000), the characterisation is quite similar with the difference that

there is no �measure� of the shear band in the direction perpendicular to the propagation direction (in other
words, the shear band is there considered as a discontinuity and, as such, it is collapsed into a line). Shear

bands are characterised by their stationary nature in the sense that their position is determined after their
formation (see Nemat-Nasser and Okada (2001) and references herein for experimental shear bands and
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Fig. 8. Schematic formation of a shear band: (a) initiation and (b) expansion of the plastic zone and (c) further localisation/expansion

within/of the plastic zone (strain localisation is triggered by a weak spot in the left bottom corner).
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Fig. 7. Geometry and boundary conditions for the specimen in biaxial compression: (a) full specimen and (b) half specimen. The

shaded part indicates the imperfection (h ¼ 60 mm; imperfection size in (a) is h=10� h=10).
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Borja (2000), Garaizar and Trangenstein (1998), Needleman and Tvergaard (1984), Ortiz et al. (1987), Sluys

(1992), Tvergaard et al. (1981), Wells and Sluys (2002), Zervos et al. (2001) for some numerical results). The
inclination angle that the shear band forms with the horizontal axis is determined mainly by assumptions

related to the constitutive model, to the Poisson�s ratio and to the plane stress or plane strain condition
(Carol and Willam, 1997; Rizzi et al., 1995; Runesson et al., 1991; Sluys, 1992) while the width of the shear

band, in a continuous description of failure, is dictated by the length scale (i.e. the larger the length scale,

the wider the band width).

In the numerical analyses, the material has been characterised by a Young�s modulus E¼ 20,000 MPa, a
Poisson�s ration m ¼ 0:2, the exponential softening law (6) with j0 ¼ 0:0001, a ¼ 0:99 and b ¼ 300 and the
von Mises equivalent strain (4). The load has been applied via displacement control. The imperfection
has been given a reduced value of j0 (j0 ¼ 0:00005) and the mesh density has been chosen to ensure a
sufficient resolution of the non-local field. To begin with, the evolution of the shear band, in terms of non-

local equivalent strain and damage fields has been analysed for the specimen in Fig. 7b with a length scale
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Fig. 9. Load–displacement curve for the shear band problem (relevant fields corresponding to the white circles are depicted in Figs. 10
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Fig. 10. Shear band evolution: contour plots of the non-local equivalent strain field (see Fig. 9).
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l ¼ 2 mm under a plane strain condition. Results depicted in Figs. 10 and 11 relate to the load–displace-

ment diagram in Fig. 9, where the applied load P is plotted against the absolute value v of the vertical
displacement. In the contour plots in Figs. 10 and 11, only values larger than the threshold in the respective

legends have been plotted. It is clear how the shear band �migrates� from the weak spot, where it was

initiated, to the opposite side of the specimen along the horizontal boundary as depicted in Figs. 10 and 11.

Similar results have been reported in Engelen et al. (2003) and Pamin et al. (2003). It is stressed that the

�migrating� shear band is not the product of an improper treatment of the boundary conditions since, as
already stated before, the geometries reported in Fig. 7 give identical results. This particular appearance of
the shear band is simply due to a wrong prediction of the positioning of localised shearing and has the same

nature of the shift of the maximum of the non-local equivalent strain in mode-I problems.

The effect of a larger length scale is reported in Fig. 12 together with a comparison between plane stress

and plane strain conditions close to failure. Similar to shear bands in a plasticity context (Runesson et al.,

1991) and as reported by Carol and Willam (1997), the only noticeable difference between plane stress and

plane strain resides in a different inclination of the shear band with respect to the horizontal axis which does

not correspond to the numerical results in Fig. 12. Further, with an increasing non-local effect a wider shear

band width is expected, while it is also noted that a more pronounced shift of the shear band takes place. In
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Fig. 11. Shear band evolution: contour plots of the damage field (see Fig. 9).
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Fig. 12. Shear band close to failure: contour plots of the non-local equivalent strain field (top) and of the damage field (bottom) for

l ¼ 1 mm (left) and l ¼ 2 mm (right) for plane stress (odd columns) and plane strain (even columns).
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one case (plane stress situation with l ¼ 2 mm) the non-local equivalent strain field mimics a mode-I
situation and almost half of the specimen is damaged, which is not realistic.
5. Concluding remarks

The analysis of failure characterisation in a class of non-local damage models has been the subject of this

contribution. It has been shown that the use of a non-local variable as dissipation-driving variable predicts

incorrect failure initiation and propagation. This issue has been investigated through analytical and nu-

merical analyses for mode-I and shear band problems. The particular choice of the examples in mode-I
failure was aimed at emphasising that the standard formulation of non-local damage model, either in
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integral (Pijaudier-Cabot and Ba�zzant, 1987) or in differential (Peerlings et al., 1996) format, is unsuited to
correctly describe damage initiation when degradation stems from a strong inhomogeneity of the strain

field. It is stressed that this phenomenon is not caused, in the present case, by boundary effects on the non-

local averaging. Analogous results can be found in cases with strong gradients of the quantity to be
averaged due to e.g. concave boundaries, concentrated loads and material inhomogeneities. Although the

shift of the maximum of the dissipation-driving variable may not alter the final failure representation in

mode-I dominated problems, it does affect the transition from continuous to continuous-discontinuous

failure in a gradient-enhanced damage model as discussed by Simone et al. (2003a,b). The numerical study

of a shear band problem illustrated that the non-local averaging is responsible for the non-stationary shear

band which results in an unrealistic failure pattern. This has been studied for various length scale values

under plane stress and plane strain conditions.

To summarise, constitutive models based on a non-local dissipation-driving variable may lead to un-
realistic failure representations due to a fundamental flaw in the damage initiation and evolution.
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